Generalized Inversion of Tropical Atmosphere–Ocean (TAO) Data and a Coupled Model of the Tropical Pacific. Part II: The 1995–96 La Niña and 1997–98 El Niño

2000 ◽  
Vol 13 (15) ◽  
pp. 2770-2785 ◽  
Author(s):  
Andrew F. Bennett ◽  
Boon S. Chua ◽  
D. Ed Harrison ◽  
Michael J. McPhaden
2019 ◽  
Vol 46 (21) ◽  
pp. 12165-12172 ◽  
Author(s):  
Cong Guan ◽  
Shijian Hu ◽  
Michael J. McPhaden ◽  
Fan Wang ◽  
Shan Gao ◽  
...  

2019 ◽  
Author(s):  
Abdul Malik ◽  
Peer J. Nowack ◽  
Joanna D. Haigh ◽  
Long Cao ◽  
Luqman Atique ◽  
...  

Abstract. Many modelling studies suggest that the El Niño Southern Oscillation (ENSO), in interaction with the tropical Pacific background climate, will change under rising atmospheric greenhouse gas concentrations. Solar geoengineering (reducing the solar flux from outer space) has been proposed as a means to counteract anthropogenic greenhouse-induced changes in climate. Effectiveness of solar geoengineering is uncertain. Robust results are particularly difficult to obtain for ENSO because existing geoengineering simulations are too short (typically ~ 50 years) to detect statistically significant changes in the highly variable tropical Pacific background climate. We here present results from a 1000-year sunshade geoengineering simulation, G1, carried out with the coupled atmosphere-ocean general circulation model HadCM3L. In agreement with previous studies, reducing the shortwave solar flux more than compensates the warming in the tropical Pacific that develops in the 4×CO2 scenario: we observe an overcooling of 0.3 °C (5 %) and 0.23-mm day−1 (5 %) reduction in mean rainfall relative to preindustrial conditions in the G1 simulation. This is due to the different latitudinal distributions of the shortwave (solar) and longwave (CO2) forcings.The location of the Intertropical Convergence Zone (ITCZ) located north of equator in the tropical Pacific, which moved 7.5° southwards under 4×CO2, is also restored to its preindustrial location. However, other aspects of the tropical Pacific mean climate are not reset as effectively. Relative to preindustrial conditions, in G1 the zonal wind stress, zonal sea surface temperature (SST) gradient, and meridional SST gradient are reduced by 10 %, 11 %, and 9 %, respectively, and the Pacific Walker Circulation (PWC) is consistently weakened. The overall amplitude of ENSO strengthens by 5–8 %, but there is a 65 % reduction in the asymmetry between cold and warm events: cold events intensify more than warm events. Importantly, the frequency of extreme El Niño and La Niña events increases by 44 % and 32 %, respectively, while the total number of El Niño events increases by 12 %. Paradoxically, while the number of total and extreme events increase, the most extreme El Niño events also become weaker relative to preindustrial state while the La Niña events become stronger. That is, extreme El Niño events in G1 become less extreme than in preindustrial conditions, but extreme El Niño events become more frequent. In contrast, extreme La Niña events become stronger in G1. This is in agreement with the general overcooling of the tropical Pacific in G1 relative to preindustrial conditions, which depict a shift towards generally more La Niña-like conditions.


2020 ◽  
Vol 20 (23) ◽  
pp. 15461-15485
Author(s):  
Abdul Malik ◽  
Peer J. Nowack ◽  
Joanna D. Haigh ◽  
Long Cao ◽  
Luqman Atique ◽  
...  

Abstract. Many modelling studies suggest that the El Niño–Southern Oscillation (ENSO), in interaction with the tropical Pacific background climate, will change with rising atmospheric greenhouse gas concentrations. Solar geoengineering (reducing the solar flux from outer space) has been proposed as a means to counteract anthropogenic climate change. However, the effectiveness of solar geoengineering concerning a variety of aspects of Earth's climate is uncertain. Robust results are particularly challenging to obtain for ENSO because existing geoengineering simulations are too short (typically ∼ 50 years) to detect statistically significant changes in the highly variable tropical Pacific background climate. We here present results from a 1000-year-long solar-geoengineering simulation, G1, carried out with the coupled atmosphere–ocean general circulation model HadCM3L. In agreement with previous studies, reducing the solar irradiance (4 %) to offset global mean surface warming in the model more than compensates the warming in the tropical Pacific that develops in the 4 × CO2 scenario. We see an overcooling of 0.3 ∘C and a 0.23 mm d−1 (5 %) reduction in mean rainfall over the tropical Pacific relative to preindustrial conditions in the G1 simulation, owing to the different latitudinal distributions of the shortwave (solar) and longwave (CO2) forcings. The location of the Intertropical Convergence Zone (ITCZ) in the tropical Pacific, which moved 7.5∘ southwards under 4 × CO2, is restored to its preindustrial position. However, other aspects of the tropical Pacific mean climate are not reset as effectively. Relative to preindustrial conditions, in G1 the time-averaged zonal wind stress, zonal sea surface temperature (SST) gradient, and meridional SST gradient are each statistically significantly reduced by around 10 %, and the Pacific Walker Circulation (PWC) is consistently weakened, resulting in conditions conducive to increased frequency of El Niño events. The overall amplitude of ENSO strengthens by 9 %–10 % in G1, but there is a 65 % reduction in the asymmetry between cold and warm events: cold events intensify more than warm events. Notably, the frequency of extreme El Niño and La Niña events increases by ca. 60 % and 30 %, respectively, while the total number of El Niño events increases by around 10 %. All of these changes are statistically significant at either 95 or 99 % confidence level. Somewhat paradoxically, while the number of total and extreme events increases, the extreme El Niño events become weaker relative to the preindustrial state, while the extreme La Niña events become even stronger. That is, such extreme El Niño events in G1 become less intense than under preindustrial conditions but also more frequent. In contrast, extreme La Niña events become stronger in G1, which is in agreement with the general overcooling of the tropical Pacific in G1 relative to preindustrial conditions.


2019 ◽  
Vol 32 (18) ◽  
pp. 5941-5965 ◽  
Author(s):  
Xian Wu ◽  
Yuko M. Okumura ◽  
Pedro N. DiNezio

Abstract The temporal evolution of El Niño and La Niña varies greatly from event to event. To understand the dynamical processes controlling the duration of El Niño and La Niña events, a suite of observational data and a long control simulation of the Community Earth System Model, version 1, are analyzed. Both observational and model analyses show that the duration of El Niño is strongly affected by the timing of onset. El Niño events that develop early tend to terminate quickly after the mature phase because of the early arrival of delayed negative oceanic feedback and fast adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific Ocean warming. The duration of La Niña events is, on the other hand, strongly influenced by the amplitude of preceding warm events. La Niña events preceded by a strong warm event tend to persist into the second year because of large initial discharge of the equatorial oceanic heat content and delayed adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific cooling. For both El Niño and La Niña, the interbasin sea surface temperature (SST) adjustments reduce the anomalous SST gradient toward the tropical Pacific and weaken surface wind anomalies over the western equatorial Pacific, hastening the event termination. Other factors external to the dynamics of El Niño–Southern Oscillation, such as coupled variability in the tropical Atlantic and Indian Oceans and atmospheric variability over the North Pacific, also contribute to the diversity of event duration.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2017 ◽  
Vol 30 (10) ◽  
pp. 3635-3654 ◽  
Author(s):  
Di Dong ◽  
Jianping Li ◽  
Lidou Huyan ◽  
Jiaqing Xue

Abstract The atmospheric perturbation potential energy (PPE) over the tropical Pacific is calculated and analyzed in a composite ENSO cycle. The PPE over the tropical Pacific troposphere increases during El Niño and decreases during La Niña, displaying two centers symmetrical about the equator and delaying the central–eastern Pacific SST anomaly by two months. Generated from atmospheric diabatic heating, the smaller part of PPE in the lower troposphere varies synchronously with the central–eastern Pacific SST through sensible heating, while the larger part of PPE lies in the mid- and upper troposphere and lags the central–eastern Pacific SST about one season because of latent heat release. As the tropical Pacific PPE peaks during the boreal late winter in an El Niño event, two anticyclones form in the upper troposphere as a result of the Gill model response. More PPE is converted to atmospheric kinetic energy (KE) above the central–western Pacific, but less over the eastern Pacific, leading to intensified Hadley circulations over the central–western Pacific and weakened Hadley circulations over the eastern Pacific. The strengthened Hadley circulations cause surface easterly wind bursts through KE convergence in the western equatorial Pacific, which may trigger a La Niña event. The reverse situation occurs during La Niña. Thus, the response of the Hadley circulations in the central–western Pacific provides a negative feedback during the ENSO cycle.


1999 ◽  
Vol 80 (5s) ◽  
pp. S1-S48 ◽  
Author(s):  
Gerald D. Bell ◽  
Michael S. Halpert ◽  
Chester F. Ropelewski ◽  
Vernon E. Kousky ◽  
Arthur V. Douglas ◽  
...  

The global climate during 1998 was affected by opposite extremes of the ENSO cycle, with one of the strongest Pacific warm episodes (El Niño) in the historical record continuing during January–early May and Pacific cold episode (La Niña) conditions occurring from JulyñDecember. In both periods, regional temperature, rainfall, and atmospheric circulation patterns across the Pacific Ocean and the Americas were generally consistent with those observed during past warm and cold episodes. Some of the most dramatic impacts from both episodes were observed in the Tropics, where anomalous convection was evident across the entire tropical Pacific and in most major monsoon regions of the world. Over the Americas, many of the El Niño– (La Niña–) related rainfall anomalies in the subtropical and extratropical latitudes were linked to an extension (retraction) of the jet streams and their attendant circulation features typically located over the subtropical latitudes of both the North Pacific and South Pacific. The regions most affected by excessive El Niño–related rainfall included 1) the eastern half of the tropical Pacific, including western Ecuador and northwestern Peru, which experienced significant flooding and mudslides; 2) southeastern South America, where substantial flooding was also observed; and 3) California and much of the central and southern United States during January–March, and the central United States during April–June. El Niño–related rainfall deficits during 1998 included 1) Indonesia and portions of northern Australia; 2) the Amazon Basin, in association with a substantially weaker-than-normal South American monsoon circulation; 3) Mexico, which experienced extreme drought throughout the El Niño episode; and 4) the Gulf Coast states of the United States, which experienced extreme drought during April–June 1998. The El Niño also contributed to extreme warmth across North America during January–May. The primary La Niña–related precipitation anomalies included 1) increased rainfall across Indonesia, and a nearly complete disappearance of rainfall across the east-central equatorial Pacific; 2) above-normal rains across northwestern, eastern, and northern Australia; 3) increased monsoon rains across central America and Mexico during October–December; and 4) dryness across equatorial eastern Africa. The active 1998 North Atlantic hurricane season featured 14 named storms (9 of which became hurricanes) and the strongest October hurricane (Mitch) in the historical record. In Honduras and Nicaragua extreme flooding and mudslides associated with Hurricane Mitch claimed more than 11 000 lives. During the peak of activity in August–September, the vertical wind shear across the western Atlantic, along with both the structure and location of the African easterly jet, were typical of other active seasons. Other regional aspects of the short-term climate included 1) record rainfall and massive flooding in the Yangtze River Basin of central China during June–July; 2) a drier and shorter-than-normal 1997/98 rainy season in southern Africa; 3) above-normal rains across the northern section of the African Sahel during June–September 1998; and 4) a continuation of record warmth across Canada during June–November. Global annual mean surface temperatures during 1998 for land and marine areas were 0.56°C above the 1961–90 base period means. This record warmth surpasses the previous highest anomaly of +0.43°C set in 1997. Record warmth was also observed in the global Tropics and Northern Hemisphere extratropics during the year, and is partly linked to the strong El Nino conditions during January–early May.


Sign in / Sign up

Export Citation Format

Share Document